Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Assunto principal
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672837

RESUMO

This study aimed to analyse the chemical profile and biological activities of 29 accessions of Brassica rapa (turnips) and 9 of Brassica napus (turnips and seeds) collections, maintained ex situ in Portugal. HPLC-HRMS allowed the determination of glucosinolates (GLS) and polyphenolic compounds. The antioxidant and antimicrobial activities were determined by using relevant assays. The chemical profiles showed that glucosamine, gluconasturtiin, and neoglucobrassin were the most abundant GLS in the extracts from the turnip accessions. Minor forms of GLS include gluconapoleiferin, glucobrassicanapin, glucoerucin, glucobrassin, and 4-hydroxyglucobrassin. Both species exhibited strong antioxidant activity, attributed to glucosinolates and phenolic compounds. The methanol extracts of Brassica rapa accessions were assessed against a panel of five Gram-negative bacteria (Enterobacter cloacae, Escherichia coli, Pseudomonas aeruginosa, Salmonella enterica subsp. enterica serovar, and Yersinia enterocolitica) and three Gram-positive bacteria (Bacillus cereus, Listeria monocytogenes, and Staphylococcus aureus). The extracts exhibited activity against S. enterica and S. aureus, and two showed inhibitory activity against E. coli and Y. enterocolitica. This study provides valuable insights into the chemical composition and biological properties of Brassica rapa and Brassica napus collections in Portugal. The selected accessions can constitute potential sources of natural antioxidants and bioactive compounds, which can be used in breeding programs and improving human health and to promote healthy food systems.

2.
Pathogens ; 13(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38251378

RESUMO

The control of Tropical Theileriosis, a tick-borne disease with a strong impact on cattle breeding, can be facilitated using marker-assisted selection in breeding programs. Genome-wide association studies (GWAS) using high-density arrays are extremely important for the ongoing process of identifying genomic variants associated with resistance to Theileria annulata infection. In this work, single-nucleotide polymorphisms (SNPs) were analyzed in the Portuguese autochthonous cattle breeds Alentejana and Mertolenga. In total, 24 SNPs suggestive of significance (p ≤ 10-4) were identified for Alentejana cattle and 20 SNPs were identified for Mertolenga cattle. The genomic regions around these SNPs were further investigated for annotated genes and quantitative trait loci (QTLs) previously described by other authors. Regarding the Alentejana breed, the MAP3K1, CMTM7, SSFA2, and ATG13 genes are located near suggestive SNPs and appear as candidate genes for resistance to Tropical Theileriosis, considering its action in the immune response and resistance to other diseases. On the other hand, in the Mertolenga breed, the UOX gene is also a candidate gene due to its apparent link to the pathogenesis of the disease. These results may represent a first step toward the possibility of including genetic markers for resistance to Tropical Theileriosis in current breed selection programs.

3.
Antibiotics (Basel) ; 11(6)2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740113

RESUMO

Although pathogenic bacteria are the targets of antibiotics, these drugs also affect hundreds of commensal or mutualistic species. Moreover, the use of antibiotics is not only restricted to the treatment of infections but is also largely applied in agriculture and in prophylaxis. During this work, we tested the hypothesis that there is a correlation between the number and the genomic location of antibiotic resistance (AR) genes and virulence factor (VF) genes. We performed a comprehensive study of 16,632 reference bacterial genomes in which we identified and counted all orthologues of AR and VF genes in each of the locations: chromosomes, plasmids, or in both locations of the same genome. We found that, on a global scale, no correlation emerges. However, some categories of AR and VF genes co-occur preferentially, and in the mobilome, which supports the hypothesis that some bacterial pathogens are under selective pressure to be resistant to specific antibiotics, a fact that can jeopardize antimicrobial therapy for some human-threatening diseases.

4.
Hortic Res ; 9: uhac070, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35669708

RESUMO

Peach [Prunus persica L. Batsch] is one of the major temperate fruit tree species, the commercial materials of which have a low level of genetic variability. Almond [P. dulcis (Mill) DA Webb], a close relative of peach cultivated for its kernels, has a much higher level of diversity. The species are inter-compatible and often produce fertile hybrids, almond being a possible source of new genes for peach that could provide biotic and abiotic stress tolerance traits. In this paper we describe the development of a collection of peach-almond introgression lines (ILs) having a single fragment of almond (cv. Texas) in the peach background (cv. Earlygold). Lines with few introgressions were selected with markers from successive generations from a "Texas" × "Earlygold" F1 hybrid, initially using a set of SSRs and later with the 18 k peach SNP chip, allowing for the final extraction of 67 lines, 39 with almond heterozygous introgressions covering 99% of the genome, and 28 with homozygous introgressions covering 83% of the genome. As a proof of concept, four major genes and four quantitative characters were examined in the selected ILs giving results generally consistent with previous information on the genetics of these characters. This collection is the first of its kind produced in a woody perennial species and promises to be a valuable tool for genetic analyses, including dissection of quantitative traits, positional cloning, epistasis and as prebreeding material to introgress almond genes of interest into the peach commercial gene pool.

5.
Plants (Basel) ; 11(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35161344

RESUMO

Bread wheat (Triticum aestivum) is a major crop worldwide, and it is highly susceptible to heat. In this work, grain production and composition were evaluated in Portuguese T. aestivum germplasm (landraces and commercial varieties), which was subjected to heat after anthesis (grain filling stage). Heat increased the test weight (TW) in Nabão, Grécia and Restauração, indicating an improved flour-yield potential. Mocho de Espiga Branca (MEB) and Transmontano (T94) showed higher thousand-kernel weight (TKW). Gentil Rosso presented increased soluble sugars, which are yeast substrates in the bread-making process. Ardila stood out for its protein increase under heat. Overall SDS was unaffected by higher temperature, but increased in T94, indicating a better dough elasticity for bread-making purposes. Under heat, lipid content was maintained in most genotypes, being endogenous fatty acids (FAs) key players in fresh bread quality. Lipid unsaturation, evaluated through the double bond index (DBI), also remained unaffected in most genotypes, suggesting a lower flour susceptibility to lipoperoxidation. In Grécia, heat promoted a higher abundance of monounsaturated oleic (C18:1) and polyunsaturated linoleic (C18:2) acids, which are essential fatty acids in the human diet. This work highlighted a great variability in most parameters both under control conditions or in response to heat during grain filling. Cluster analysis of traits revealed a lower susceptibility to heat during grain filling in Ardila, Restauração, and Ruivo, in contrast to MEQ, which seems to be more differentially affected at this stage. Characterization and identification of more favorable features under adverse environments may be relevant for agronomic, industrial, or breeding purposes, in view of a better crop adaptation to changing climate and an improved crop sustainability in agricultural systems more prone to heat stress.

6.
Hortic Res ; 9: uhac111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38486834

RESUMO

Pears (Pyrus) are one of the most economically important fruits worldwide. The Pyrus genus is characterized by a high degree of genetic variability between species and interspecific hybrids, and several studies have been performed to assess this variability for both cultivated and wild accessions. These studies have mostly been limited by the resolving power of traditional molecular markers, although in the recent past the availability of reference genome sequences or SNP arrays for pear have enhanced the capability of high-resolution genomics studies. These tools can also be applied to better understand the intra-varietal (or clonal) variability in pear. Here we report the first high resolution genomics analysis of a pear clonal population using whole genome sequencing (WGS). Results showed unique signatures for the accumulation of mutations and transposable element insertions in each clone, which are likely related to their history of propagation and cultivation. The nucleotide diversity remained low in the clonal collection with the exception of few genomic windows, suggesting that balancing selection may be occurring. These windows included mainly genes related to plant fertility. Regions with higher mutational load were partially associated with transcription factors, probably reflecting the distinctive phenotypes in the collection. The annotation of variants also revealed the theoretical disruption of relevant genes in pear. Taken together, the results from this study show that pear clones accumulate mutations differently, and that those mutations can play a role on pear phenotypes, meaning that the study of pear clonal populations can be relevant in genetic studies, mainly when comparing with traditional association studies.

7.
São Paulo; Artes Médicas; 3 ed; 1981. 334 p. ilus, tab.
Monografia em Português | Sec. Munic. Saúde SP, AHM-Acervo, TATUAPE-Acervo | ID: sms-11685
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...